Archive for the 'biodiversity' Category

Our Vision for Successful SPM – Part 6: New knowledge for pest prevention

Ron Whitehurst, PCA and co-owner Rincon-Vitova Insectaries, Inc.

Our vision for successful Sustainable Pest Management is that UCCE Farm Advisors, farmers, PCAs, CCAs, and field scouts – all farm personnel – effectively monitor pests and biological control in a landscape approach for predicting populations and evaluating interventions appropriate to the farming system. They enhance biological control and eliminate or decrease pest problems below economic injury levels. 

We imagine future training and extension of biological control practices and tools available to everyone who is interested. They learn preventive cultural practices, habitat enhancement, and determination of biological action levels for colonization and/or augmentative release of natural enemies and/or application of biological and National Organic Program (NOP) approved pesticides.

PCAs and farmers can reduce pest problems and be more profitable. PCAs will guide farmers to build biodiversity-based systems, i.e. build soil, grow healthy plants that do not attract pests, build reservoirs of natural enemies and anticipate that pest population densities will stay below pesticide action levels resulting in no need for any pesticides because they do not want to disrupt the biological control. .

SPM EDUCATORS AT THE CENTER OF REGIONAL PLANNING:  All of our entomology professor friends who teach Pest Control Advisors (PCAs) cite the need for better support and communication with the Department of Pesticide Regulation and the California Department of Food and Agriculture. PCA’s must get Continuing Education Credits for learning from experts (now largely from the biocontrol industry) what they must know about the centrality of biological control and how it is achieved. 

Ruben Alarcon at CSU Channel Islands said entomology professors at CSUs and community colleges are sometimes brought in as an after-thought. It is usually Farm Advisors and product representatives offering Continuing Education Units (CEUs), not the professors teaching IPM or biological control. The knowledge needed is currently not approved for CEU course content.This must change immediately. 

If entomology professors would be consulted at the start of SPM curriculum development their advice would be to:

  • Include landscape level insect monitoring with a focus on natural enemies of key pests in the farmscape, invertebrate species identification, understanding pests and natural enemies as populations, insect movement (population dynamics), and then the more advanced training on determining pest to beneficial ratios and habitat enhancement for particular beneficials. To reiterate because this is so important, effective monitoring is at the landscape level and includes natural enemies as a prerequisite to biological, cultural and physical interventions.
  • Include protection of non-target animal species, including insectivorous birds, birds of prey, amphibians, fish and predatory mammals.  
  • Include understanding of naturally-occurring biological control and its importance for a healthy ecological system that doesn’t require the use of pesticides. 

RESEARCH AND EXTENSION IS IN DECLINE AND MUST BE ALMOST ENTIRELY REBUILT. While we are seeing a constant influx and threat of invasive species, warmer temperatures and extremes affecting pests and their natural enemies, biological control research is more needed than ever. There is an exponential need to train new biocontrol entomological scientists paid to study what farmers need to know. This is difficult when they depend on pesticide manufacturers for their research funding. 

Dr. Lynn LeBeck, the Executive Director of the Association of Natural Biocontrol Producers observes: 

“Our UC and CDFA biocontrol workforce are currently overextended just providing expertise for ongoing pest problems, but both are involved in “proactive” research initiatives for serious insect pests that are either being intercepted routinely or will be in the near future.  Positions vacant due to recent and pending retirements that are, and have had, biological control duties are not being refilled.”

With the very last few biocontrol entomology professors retiring and not being replaced, a huge priority must be put to rebuild the robust infrastructure for research to support SPM that is California’s legacy from before the influence of chemical pesticides. 

The history of our industry since the 1950’s has been in stark contrast to how it has developed in Europe and British Columbia where Dutch, British, Belgian and Canadian governments and agricultural universities helped their insectaries grow internationally. Most beneficial insects sold in the US are grown in those countries. The small amount of research done is by foreign insectaries in collaboration with their universities. Their business model sometimes puts a higher priority on sales over the multi-pronged approach to help farmers transition away from biological inputs. There can be similar conflicts of interest for biological and chemical input sales people. No Pest Control Advisors should be paid commission for their sales. Inputs of any kind are not in the farmer’s best interest if they don’t need them. There should be incentives for PCAs who sell advice to achieve successful programs with the least amount of products.  

Classical or “introduction” biological control is not given importance commensurate with what it achieved in the last century. It alone can quickly turn new pest invasions into non-pests as California’s state entomologists did effectively from 1907 until 1947 before the well-organized influence of the chemical pesticide industry. When plant-feeding insects arrive without their natural enemies, the most effective first strategy is to go to the native home of the pest and research to effectively reunite the natural enemies with their host insect. Most invasive pests are forgotten within one to four seasons as their natural enemies spread and come into balance.  

Biological input-based systems must be understood as the in-between part of the path from conventional chemicals towards biodiversity-based farming systems. They need help when colonization biocontrol or natural biocontrol is a little slow to build up. Augmentative biological control helps fill gaps apparent when monitoring development and maintenance of a biodiversity-based system. 

The California biocontrol industry has been largely either ignored, actively opposed or faced external competition. Rather than be supported to fill this role in transition away from chemical pesticides, it has survived by overcoming one regulatory, ignorant or corrupt UCCE advice, or market barrier after another. US insectaries have developed our knowledge base with the quiet help of a very few researchers, all of them now retired. Yet, we provide the products and services that work for people who do not want to use toxic pesticides. Worst of all, we must compete with some foreign insectary companies that have questionable sales tactics and product quality.

Our industry’s top product quality leaders and expert trainers have been mostly women developing their businesses in spite of the host of barriers too pervasive too describe here.

In the words of Dr. Lynn LeBeck, our industry association executive director:

“The commercial biocontrol producers and distributors in California (and nationwide) receive inquiries daily about how to use beneficial species in a myriad of cropping systems and sometimes all the data is just not extant for each detailed pest/crop/natural enemy. In addition organic production continues to increase in California, along with sustainable practices in general, but the skyrocketing acreage of a few crops in particular, one crop in particular, will overload resources.” 

Tight regulation and intensive testing of cannabis has resulted in some cannabis growers knowing more about non-toxic pest control than in any other crop. Similarly the horticulturists in zoos, arboreta and casinos who can’t or don’t want to use pesticides indoors have been highly observant and insightful biocontrol practitioners. When chemicals are not an option, because of regulations, risky exposures to people or captive wildlife, or personal preference of a manager, these people acquire the knowledge base to be successful. When chemicals are banned and not an option for anybody, then people in all sectors of agriculture and horticulture can learn and teach others to manage pests in biological input-based systems.

Research is needed in how much of what kind of biodiversity works best. Dr. Annemiek Schilder, Director of the Ventura County University of California Cooperative Extension stresses the importance of biological control for SPM and the need for an entirely new category for continuing education (CE) courses. She explains,

“Within this, there needs to be a focus on understanding ecological principles, interactions and population dynamics of beneficial and pest species, as well as the role of and how to measure farm biodiversity. We need to ask, is all biodiversity good or do we need specific components for a pest/disease-suppressive system?” 

Dr. Headrick has the same questions about how to know how much diversity is advisable. The most appropriate biodiversity may just be adding one new plant species to a system (doubling the number of species). He gives the example in sweet alyssum interplantings in Salinas valley lettuce to attract syrphid flies for aphid control that eliminated use of the worst pesticides in that chemical input-based farming system.

As we wean off from chemicals, Dr. Schilder asks: “There may be a temporary increase in pest pressure before a new balance is reached – how long does that take and how do you know you are going in the right direction? Understanding new action thresholds in all crops and varieties will require a substantial amount of research.” Who will do that?

Dr. Schilder has these additional thoughts about research needs:

“Much more testing and monitoring is needed to accurately assess pesticide burden in food and environment. Also, educating the public on relative pesticide exposure risk in the home or living environment vs. food.”

“There should be more funding for research efficacy trials. For many biological fungicides, data on efficacy on many crops and diseases are limited or lacking. More years of trials may be needed due to  variability due to variable weather conditions. We need additional efforts in finding ways to increase efficacy and reliability of existing materials, for instance with additives or blending products. For instance, from our research, we realized adding Nu-Film P (sticker-extender) helps protect bacteria-based products like Serenade, likely by reducing desiccation and UV-degradation.”

“Research is especially important for soilborne and vector-borne diseases where the vector is widespread and difficult to control. Clean (virus-tested) plants also can play a huge role in preventing diseases, especially viruses and virus-like pathogens. If viruses are absent, some insect vectors may not need the level of control that is required in the presence of viruses (National Clean Plant Network https://www.nationalcleanplantnetwork.org/)”. This will also relate to parasitic plants such as witch’s broom.

“We need research about spray technology–ways to improve coverage and efficacy as well as reduce pesticide burden and drift. Demonstrations are needed for already known technology.”

Biopesticide research, registration and extension is needed to meet rising demand. The EPA recognizes three major classes of biopesticides: Microbial Pesticides, Biochemical Pesticides, and Plant-Incorporated-Protectants (PIPs). Efficacy compares well with chemical pesticides and is safer for farmworkers and neighbors. Being biodegradable and with low volatiles, they do not pollute land, air or water and generally are low risk for beneficial insects and higher organisms and many are approved for use in organic farming. Just like with natural enemies for biological control, education is needed that they exist, that they work, that they do not pose risks as do chemical pesticides, where to get qualified advice, and where to buy them. 

As explained on the Marrone Bio Innovations website,

“Growers will try a new biopesticide product and compare it with their existing pest management programs in demonstration trials. Conducting demonstrations is the best, if not only way to gain adoption. In addition, University Extension researchers will also test pesticide products and provide their recommendations. Therefore, adoption can be faster as more field trials are conducted….In one California survey, growers and PCAs indicated that biopesticide companies should place a heavy emphasis on education in order to establish sustainable use of the product. They indicated that the companies should target specific markets, either by crop, pest or disease. In turn, companies should be very clear about the protection and value being provided to the grower.”

Biopesticides may support biological control but they are NOT biological control. The latter provides potentially more lasting benefits through classical (exploration and colonization) and augmentative biological control (releasing natural enemies to directly reduce pest populations). Biopesticides are important in the middle of the transition continuum–for biological input-based farming systems. There is a great need for proper education to build capacity for more comprehensive monitoring, integration of cultural practices, habitat enhancement, and the use of biocontrol agents and biopesticides that don’t disrupt natural biocontrol. All five of these features of biological input-based and biodiversity-based farming systems require an entirely different knowledge and skill set compared to planting pesticide-coated seeds and spraying or drenching chemicals. Biopesticides are very valuable tools, but biological control is the endgame.

Molecular biology and electromagnetic signals can help explain why biodiversity- based farming systems have few pests. After over 30 scientific papers explaining insect communication, Dr. Phillip Callahan’s discoveries remain outside of the knowledge base for pest management. Dr. Tom Dykstra founder of Dykstra Laboratories Inc. is continuing research showing how bioelectromagnetics explains the influence of electrical signaling on cell communication, growth and plant and animal health. Dr. Dykstra has a specialization in the complex physiological reasons why insects are attracted to dead, dying, or nutritionally poor, i.e. “sick” plants. He has shown measurable results with plant sap or leaf Brix readings reflecting plant nutrient composition, health and pest and disease decline in less than one season to improve soil, crop longevity, nutrient density and flavor, and profitability for producers. 

Illustration by Jan Dietrick inspired by image from Sharma, E., Anand G., & Kapoor, R. (2017). Terpenoids in plant and arbuscular mycorrhiza-reinforced defence against herbivorous insects.

Swiss scientists have also explained the electrical signals stimulated by insects chewing on plants. Wounds increase systemic plant hormone responses that can attract beneficial insects to attack the plant-chewing insect.  (Farmer, et. al. 2020) Another phenomenon in biodiversity-based systems is plant defensive strategies against herbivorous insects from terpenoids and symbiotic associations with arbuscular mycorrhizal fungi in healthy plants. Fungal hyphal networks in soil serve as electrical conduits facilitating the transfer of defense signals and terpenoids between conspecific and heterospecific plants. Terpenoids increase calcium ions and membrane depolarization causing a protective “priming memory” response lasting up to five days.(Sharma et. al. 2017). This is probably the tip of the iceberg in understanding why it is common that biodiversity-based farming systems are often pest-free and disease-free. We don’t have to have any more data than this to see how to design a Roadmap to achieve SPM goals.

Respect must be paid to all ways of knowing and learning for all SPM farm personnel. How can PCAs trained and experienced in determining chemical action levels learn new knowledge and skills to consider more and different variables when determining biological action levels? Then, also, how do PCAs help farmer clients see new options after they have been inundated by decades of pesticide propaganda? 

INRAE, the French National Research Institute for Agriculture, Food and Environment, is the number two agricultural institute in the world. It has evaluated various learning support tools including games that link principles and actions toward biodiversity-based farming to teach decision-making in situations of uncertainty associated with biodiversity-based farming systems. DPR and CDFA should welcome INRAE’s ideas and consultants in the development of curricula to support SPM.

A group training board game for learning decision-making about conservation ecology land management.

Research will help most current farmers to be more efficient and less polluting with agricultural chemicals being used at the chemical input-based part of the transition continuum. However, as learning and change take place, the need will shift to user-friendly decision-support systems which integrate up-to-date scientific knowledge for more biological inputs and biodiversity-based systems. 

Researchers at INRAE see the need for new teaching methodologies including game-based learning tools. The sociological factors are also critical. The Community Alliance for Family Farmers had an outstanding model in the 1990’s called “Lighthouse Farmer Network” that created a lively space for a monthly breakfast or lunch with a short presentation and give and take discussion with successful practitioners trying new sustainable practices. The participative discussion is much more important than the field day observations. Farmers can see what their neighbors are doing. They need to hear how it was approached and what happened. Certainly university experts giving talks is the least transformative pedagogy; more so when most of the research is in product trials where biological control is not one of the comparisons and the goal is resistance management comparing chemical, biopesticide, and genetically engineered plants. 

Duru, et. al. address the training needs:

“Developing biodiversity-based farming systems and multiservice landscapes raises questions about how to manage the “transformational” transition from specialized systems and simplified landscapes to well-established diversified ones. During this transition, variability in ecosystem services may increase greatly until slow variables reach states which provide ecosystem services at expected levels and degrees of biophysical resilience and stability. Uncertainties…may increase during this transition.” 

The transformation to increasingly biodiversity-based farming systems, where pest prevention is achieved through cultural management and habitat diversification to enhance natural biological control, requires a massive transformation in the educational and research infrastructure. Farmers and SPM educators are at the center of the work. Investment in farmer-led research must replace a research infrastructure that has been a marketing arm of the pesticide industry. This revival of the knowledge of biological control entomology with research and teaching personnel is vital. Diverse ways of knowing and learning and internal methods of validating knowledge must be respected along with the mainstream science of conservation and protection of biodiversity. 

References:

Callahan, Phillip S. (1965-1975). 36 published papers summarized on Free Library “Electromagnetic communication and olfaction in insects”.

Callahan, Phillip S., 1975. Insect antennae with special reference to the mechanism of scent detection and the evolution of the sensilla. International Journal of Insect Morphology and Embryology, Vol 4, Issue 5,(381-430).

Duru et. al. (2015) How to implement biodiversity-based agriculture to enhance ecosystem services: a review, INRA Science & Impact, Agron, Sustain. Dev. 

Farmer, Edward E, Yong-Qiang Gao, Gioia Lenzoni, Jean-Luc Wolfender and Qian Wu, 2020. Wound- and mechanostimulated electrical signals control hormone responses, New Phytologist: 227(1037-1050)

Sharma, E., Anand G., & Kapoor, R. (2017). Terpenoids in plant and arbuscular mycorrhiza-reinforced defence against herbivorous insects. Annals of Botany, ncw 263.

Advertisement

Our Vision for Successful SPM – Part 5: Regional Focus 

Ron Whitehurst, PCA and co-owner Rincon-Vitova Insectaries, Inc.

The SPM Roadmap will be released by the California Department of Pesticide Regulation by the end of 2022. It will be a great step forward. To achieve the SPM goals, we believe the focus should be at a regional level. There is a parallel with federal IPM development with four USDA National Institute of Food and Agriculture Regional Centers that coordinate, enhance, and facilitate the flow of resources and information, including grants management, data acquisition and sharing, and accountability for resources. They help people organize IPM projects, create communications and learning forums, host webinars, moderate meetings, help state or local entities develop and disseminate information or whatever serves local goals. California Regional SPM Centers can play a similar role to expand and extend the knowledge base by such actions as follows:

  1. Reflect the continuum framework, i.e. chemical input-based to biological input-based to biodiversity-based farming systems,
  2. Research low-hazard and low-risk substitution tools necessary for transition,
  3. Facilitate community learning to integrate science, experience, and traditional and intuitive ways of knowing,
  4. Gather data for models that help teach the effects of agroecological practices on biodiversity and ecosystem services,
  5. Support learning for success in a biodiversity-based paradigm through seeing  the limits and false economies in the efficiency/substitution paradigm, 
  6. Facilitate learning that improves consultant and farmer decision-making in situations of uncertainty,  
  7. Improve communication between regulatory agencies and educators at public institutions with early engagement of educators of SPM in the decision process on aligned curricula and training of successful SPM practitioners,
  8. Include PCAs as active and respected players in the information pipeline especially in the area of field research, educational programs, and individualized grower assistance and follow up, and
  9. Showcase farms on their way to biodiversity-based systems that will attract added revenue from carbon and eco-credits. 

Among the opportunities with regional planning and programs, we’ll describe those that have not been discussed as much: Resource Conservation Districts, field scout training, regional food hubs and regional insectaries. 

Resource Conservation Districts are already a primary source of Technical Assistance and many employ people with backgrounds in agroecology and biodiversity conservation. There are 95 RCDs. Their boards of directors are from the region and tuned to local needs and resources. Their mission is natural resource conservation and learning how biodiversity-based farming systems support that mission through farmer-to-farmer learning and relevant farmer-directed research. They are an ideal focal point for stakeholders to consult and agree on strengths, needs, barriers and to make transparent decisions about how to distribute funding.

Wild Farm Alliance 2017 tool for organic farmers to work with RCDs to conserve biodiversity. 

Biological control field scout training is a needed area of development. Local colleges and universities, RCDs and the Cooperative Extension can collaborate to define the knowledge base for field scouts to monitor pest and natural enemy populations and apply biological control practices and tools, including installation and care of hedgerows, border plantings, interplantings, silvopasture, and agroforestry within an agroecological continuum framework. There are opportunities for inclusion and social equity values, for women, lower-income people, people of color, and especially farmworkers. Field scouting, like nursery work, is a path to employability in drug rehab programs. Some farmworkers have strong aptitude and desire to be field scouts. 

Francisco Cornejo Soms teaching Kevin Antongiovanni’s farm workers to scout for beneficial insects 1997

Regional food hubs are important for connecting farmers and ranchers with institutional buyers (restaurants, hospitals, schools, etc) and end consumers. They help farmers gain access to larger markets so they can focus more on farming and less on marketing, distribution, etc. Food hubs channel buyer needs and enable them to prioritize working with those farmers with organic or comparable certification. 

Regional insectaries have a long history in California. San Diego County Department of Agriculture was rearing Cryptolaemus for release into local lemon orchards at an insectary in Chula Vista in 1929 and other county insectaries followed. In the 1950s they were all funded by federal, state or county governments and then some by farmer cooperatives or pest control districts. The Fillmore Citrus Protective District (FCPD), a successful grower cooperative, had been formed to eradicate citrus pests, but an insectary to produce beneficial insects was added when the impracticality of eradication became evident. 

California State Insectarium. One of the world’s first insectaries built in 1907 at the capitol for collecting, breeding, and distributing beneficial insects to control fruit and vegetable pests. In 1923 most activities moved to the Citrus Experiment Station in Riverside.
Insect rearing cages in the state insectary over 100 years ago. . It is now a maintenance facility for Capitol Park in Sacramento.

Regional insectaries are an ideal focal point for collaboration in the training of both insectary workers and field scouts. Insectaries of the future must be grower-led cooperatives while benefiting from researchers to ensure uncompromised quality in biological control monitoring and interventions as well as products. In this model, regional cooperative insectaries can benefit the general community as well as farmers, assist with classical biological control projects, mass-rear and release augmentative biological control agents, and colonize and monitor released organisms. The membership of a regional insectary should democratically set priorities and plans about how to minimize toxic inputs, maximize grower economic sustainability, harmonize the urban-rural interface, and protect farmland. 

The ownership structure for regional insectaries best includes per acre member dues by growers, land-owners, and various districts, along with a financial contribution from local jurisdiction(s). The structure should have a check and balance on potential conflicting interests that may arise between insectary management, researchers and large growers. The manager must juggle the needs and strengths of a broad community of stakeholders to remain relevant and viable. All stakeholders must both inform and follow the lead of the  farmers, PCAs, farmworkers, and specialized agricultural workers and Field Scouts.  Grower-led regional insectaries are the way of the future. 

In my next post we’ll go deeper into how to teach and support Pest Control Advisors and field scouts to achieve biological control and help growers transition to less dependence on pesticides.  

Our Vision for Successful Sustainable Pest Management – Part 1: The Centrality of Insect Biodiversity 

by Ron Whitehurst, PCA, with Jan Dietrick, MPH, Co-owners Rincon-Vitova Insectaries, Inc.

Everett J. “Deke” Dietrick
Robert van den Bosch

Appreciation to Deke & Van

We draw on what we learned from our mentor, Jan’s father, Everett J. “Deke” Dietrick, and Robert “Van” van den Bosch who dedicated their lives to biological control of pests, as we envision how SPM can work

In his memoirs Deke wrote: “There were such political challenges to carrying out the research I was doing to promote biological control by natural enemies that at this critical juncture in 1960 when modern organic chemistry was leading the “war on bugs”, I saw an opportunity to start a professional consulting service that sold pest management based on biological control. Having spent 15 years in classical biological control research, I was ready to try to reach growers with the news that biological methods are better than chemical methods.”  

Van summed it up: “The evolution of a rational pest-control strategy very much depends upon the outcome of this conflict…between those who are seeking change and those who want things to remain as they are.” From The Pesticide Conspiracy (1978) p. 91.

Part 1 – The Centrality of Insect Biodiversity

I am honored to have the opportunity to serve on the Sustainable Pest Management (SPM) Work Group advising the California Department of Pesticide Regulation on the development of a Roadmap to transition away from reliance on toxic pesticides. The group has 25 members. There are a few people like me who manage pests without chemical pesticides. There are also several experts in Integrated Pest Management, several who struggle with the idea of losing access to chemical pesticides, several representing farmworkers and a couple representatives of indigenous stakeholders, in this case Pomo Indians and another tribe, as well as toxicology exposure scientists, biodiversity and food protectors, and Houston Wilson, Director of the new University of California Organic Agriculture Institute. 

Good news! After well over a year of meetings, the consensus Roadmap is starting to come together. Meanwhile I have been collecting more ideas from friends about what it needs to be successful. Thanks to 22 friends who took time to give me some feedback, we have a great collection of important ideas that I’m forwarding to the SPM Work Group. Entomologists (professors and researchers) shared what I believe are the most important ideas. Four of them teach biological control to Pest Control Advisors (PCAs) and have a lot to say! Several PCAs and consulting agroecologists shared insights. The thoughts from organic farmer and field research friends Phil McGrath, Larry Jacobs, Steve Sprinkle, and Arianna Bozzolo of Rodale Institute confirm what we know to be true about the benefits and that farmers need help. I’m especially grateful to Annemiek Schilder at the Ventura County UC Cooperative Extension; Jo Ann Baumgartner, Director of Wild Farm Alliance; Daniel Gluesenkamp, Executive Director, California Institute for Biodiversity; and Nik Bertulis, Co-Founder California Center for Natural History, also a Permaculture Designer and Teacher, for their detailed suggestions. If you want to see the discussion draft or just have thoughts about what’s in this blog, let me know.

Out of the gate, my biological control friends agree that Sustainable Pest Management or SPM is a big step up from Integrated Pest management or IPM because it aims for long-term prevention of pests and their damage in a framework of increasing biodiversity. It is achieved by conservation biological control (including habitat enhancement and adjustments in cultural practices) as well as consideration of mechanical controls and use of resistant plant varieties. Chemical pesticides are used ONLY when other methods aren’t adequately managing pest populations. Definitions are critically important, which I’ll post about next. The Roadmap is easier to navigate when we understand what others are talking about! 

Our biological control sector lifts up the importance of increasing biodiversity–not just because it is the way to wean off of toxic pesticides–but also because we want the Roadmap to offer a positive vision of increasingly biodiverse farming systems that are more resilient with fewer problems and less costly inputs. This is what agroecology looks like. 

Experts in agroecology and biological control agree that the goal of the Roadmap is to move along a biodiversity continuum with metrics and targets for both below and above ground biodiversity. Jo Ann Baumgartner has already been traveling this road more on the above-ground level. Check out the publications by the Wild Farm Alliance that help organic farmers comply with the USDA National Organic Standards. The organic law requires that organic farms “foster cycling of resources, promote ecological balance, and conserve biodiversity.” Jo Ann published Positive Organic Indicators and Red Flags–Inspecting for Natural Resources and Biodiversity on Farms to standardize concepts for increasing compliance with the organic standard. Her work is expandable beyond organic to SPM. Another Wild Farm Alliance publication How to Conserve Biodiversity on the Farm: Actions to Take on a Continuum from Simple to Complex suggests what we know from science, that with complexity there is more biological control of pests. I plan on diving dive into this in my seventh post in this series. 

Organic farmers are leading the way to SPM. Every crop in California can be grown organically without artificial toxic inputs. Organic and especially regenerative organic farms have greater resilience to drought and floods and tend to reduce and sometimes nearly eliminate the need for costly fertilizer and pest control. Weeding, mulching, and the possible need for on-farm composting can require more labor. The farmer might need new types of equipment and inputs to build healthier soil and suppress pests, but before long the farm is more profitable and the benefits become evident. The first couple or three seasons building biological balance might keep the farmer awake at night, but, the way one of our customers put it, “Farming is fun again when I left the spray rig in the barn.”  For most organic farms, the focus is on increasing biodiversity within the root zone of the crop plants and then learning what kinds of above-ground biodiversity fit with the cropping system and meet the particular goals. 

The first idea from a few friends was about the necessity for regular landscape scale biodiversity monitoring as part of the principles and practice of agroecology. As Daniel Gluesenkamp, Director of California Institute for Biodiversity (CIB) explains, “We currently don’t even have a baseline inventory for insects. We don’t know how many insect species occur in California, maybe 50,000 to 200,000 with only 40,000 to 60,000 having been described by science.  We have no maps or good site-specific characterizations. We are blind. There are technical challenges in catching/viewing insects, especially the many tiny forms.”  We also need to know the negative impacts that affect non-target vertebrate species–insectivorous birds, birds of prey, amphibians, fish, and predatory mammals that is documented in this film: The great death of insects | DW Documentary. . We want a robust monitoring program rolling out in 2023. Numeric goals and target dates for establishing baselines and databases and monitoring infrastructure must be a top priority in the Roadmap.

CIB is doing DNA barcoding to establish baselines for insects and the Dietrick Institute for Applied Insect Ecology specializes in training women, farmworkers, and students in monitoring insect populations where farmers have installed habitat enhancements for natural enemies. The California Center for Natural History can pilot and train teachers and NGOs to organize citizen scientists to help count non-target animal species. Getting baselines is a costly initial undertaking, whereas the on-going monitoring will not be expensive. What areas need the most help? How well are we restoring biodiversity in priority regions? How does that correlate with pest pressures?

From United Nations Environment Programme, Foresight Brief No. 011, 2019, 
We are “Losing the Little Things that Run the World”

This important work to inventory California’s insects builds on my father-in-law, Everett (Deke) Dietrick’s work with Robert van den Bosch from 1953 to 1960 in the University of California Department of Biological Control cataloging all the insects in an alfalfa field using sweep nets, vacuum nets, and soil/duff samples. Dr. van den Bosch and Everett Dietrick observed that most of the insects in California agriculture could be found in untreated perennial alfalfa fields.

Working on the SPM Roadmap gives me hope. I’m excited to share in upcoming posts more about what I’ve learned with the Work Group. My partner Jan Dietrick is helping me organize our ideas with the input from our friends into a series of articles on the following topics.    

Part 2: Defining how SPM actions relate to each other 

Part 3: Incentivize regenerative organic and ban disruptive chemical pesticides

Part 4: Biological control action levels–examples from the field

Part 5: Regional SPM focus with RCDs, field scouts, food hubs and insectaries

Part 6: New knowledge for pest prevention

Part 7: What has to be different for SPM? [Hint: life]

Part 8: Myths and truths about pest control

Part 9: SPM for city people


Archives


%d bloggers like this: