Our Vision for Successful SPM – Part 6: New knowledge for pest prevention

Ron Whitehurst, PCA and co-owner Rincon-Vitova Insectaries, Inc.

Our vision for successful Sustainable Pest Management is that UCCE Farm Advisors, farmers, PCAs, CCAs, and field scouts – all farm personnel – effectively monitor pests and biological control in a landscape approach for predicting populations and evaluating interventions appropriate to the farming system. They enhance biological control and eliminate or decrease pest problems below economic injury levels. 

We imagine future training and extension of biological control practices and tools available to everyone who is interested. They learn preventive cultural practices, habitat enhancement, and determination of biological action levels for colonization and/or augmentative release of natural enemies and/or application of biological and National Organic Program (NOP) approved pesticides.

PCAs and farmers can reduce pest problems and be more profitable. PCAs will guide farmers to build biodiversity-based systems, i.e. build soil, grow healthy plants that do not attract pests, build reservoirs of natural enemies and anticipate that pest population densities will stay below pesticide action levels resulting in no need for any pesticides because they do not want to disrupt the biological control. .

SPM EDUCATORS AT THE CENTER OF REGIONAL PLANNING:  All of our entomology professor friends who teach Pest Control Advisors (PCAs) cite the need for better support and communication with the Department of Pesticide Regulation and the California Department of Food and Agriculture. PCA’s must get Continuing Education Credits for learning from experts (now largely from the biocontrol industry) what they must know about the centrality of biological control and how it is achieved. 

Ruben Alarcon at CSU Channel Islands said entomology professors at CSUs and community colleges are sometimes brought in as an after-thought. It is usually Farm Advisors and product representatives offering Continuing Education Units (CEUs), not the professors teaching IPM or biological control. The knowledge needed is currently not approved for CEU course content.This must change immediately. 

If entomology professors would be consulted at the start of SPM curriculum development their advice would be to:

  • Include landscape level insect monitoring with a focus on natural enemies of key pests in the farmscape, invertebrate species identification, understanding pests and natural enemies as populations, insect movement (population dynamics), and then the more advanced training on determining pest to beneficial ratios and habitat enhancement for particular beneficials. To reiterate because this is so important, effective monitoring is at the landscape level and includes natural enemies as a prerequisite to biological, cultural and physical interventions.
  • Include protection of non-target animal species, including insectivorous birds, birds of prey, amphibians, fish and predatory mammals.  
  • Include understanding of naturally-occurring biological control and its importance for a healthy ecological system that doesn’t require the use of pesticides. 

RESEARCH AND EXTENSION IS IN DECLINE AND MUST BE ALMOST ENTIRELY REBUILT. While we are seeing a constant influx and threat of invasive species, warmer temperatures and extremes affecting pests and their natural enemies, biological control research is more needed than ever. There is an exponential need to train new biocontrol entomological scientists paid to study what farmers need to know. This is difficult when they depend on pesticide manufacturers for their research funding. 

Dr. Lynn LeBeck, the Executive Director of the Association of Natural Biocontrol Producers observes: 

“Our UC and CDFA biocontrol workforce are currently overextended just providing expertise for ongoing pest problems, but both are involved in “proactive” research initiatives for serious insect pests that are either being intercepted routinely or will be in the near future.  Positions vacant due to recent and pending retirements that are, and have had, biological control duties are not being refilled.”

With the very last few biocontrol entomology professors retiring and not being replaced, a huge priority must be put to rebuild the robust infrastructure for research to support SPM that is California’s legacy from before the influence of chemical pesticides. 

The history of our industry since the 1950’s has been in stark contrast to how it has developed in Europe and British Columbia where Dutch, British, Belgian and Canadian governments and agricultural universities helped their insectaries grow internationally. Most beneficial insects sold in the US are grown in those countries. The small amount of research done is by foreign insectaries in collaboration with their universities. Their business model sometimes puts a higher priority on sales over the multi-pronged approach to help farmers transition away from biological inputs. There can be similar conflicts of interest for biological and chemical input sales people. No Pest Control Advisors should be paid commission for their sales. Inputs of any kind are not in the farmer’s best interest if they don’t need them. There should be incentives for PCAs who sell advice to achieve successful programs with the least amount of products.  

Classical or “introduction” biological control is not given importance commensurate with what it achieved in the last century. It alone can quickly turn new pest invasions into non-pests as California’s state entomologists did effectively from 1907 until 1947 before the well-organized influence of the chemical pesticide industry. When plant-feeding insects arrive without their natural enemies, the most effective first strategy is to go to the native home of the pest and research to effectively reunite the natural enemies with their host insect. Most invasive pests are forgotten within one to four seasons as their natural enemies spread and come into balance.  

Biological input-based systems must be understood as the in-between part of the path from conventional chemicals towards biodiversity-based farming systems. They need help when colonization biocontrol or natural biocontrol is a little slow to build up. Augmentative biological control helps fill gaps apparent when monitoring development and maintenance of a biodiversity-based system. 

The California biocontrol industry has been largely either ignored, actively opposed or faced external competition. Rather than be supported to fill this role in transition away from chemical pesticides, it has survived by overcoming one regulatory, ignorant or corrupt UCCE advice, or market barrier after another. US insectaries have developed our knowledge base with the quiet help of a very few researchers, all of them now retired. Yet, we provide the products and services that work for people who do not want to use toxic pesticides. Worst of all, we must compete with some foreign insectary companies that have questionable sales tactics and product quality.

Our industry’s top product quality leaders and expert trainers have been mostly women developing their businesses in spite of the host of barriers too pervasive too describe here.

In the words of Dr. Lynn LeBeck, our industry association executive director:

“The commercial biocontrol producers and distributors in California (and nationwide) receive inquiries daily about how to use beneficial species in a myriad of cropping systems and sometimes all the data is just not extant for each detailed pest/crop/natural enemy. In addition organic production continues to increase in California, along with sustainable practices in general, but the skyrocketing acreage of a few crops in particular, one crop in particular, will overload resources.” 

Tight regulation and intensive testing of cannabis has resulted in some cannabis growers knowing more about non-toxic pest control than in any other crop. Similarly the horticulturists in zoos, arboreta and casinos who can’t or don’t want to use pesticides indoors have been highly observant and insightful biocontrol practitioners. When chemicals are not an option, because of regulations, risky exposures to people or captive wildlife, or personal preference of a manager, these people acquire the knowledge base to be successful. When chemicals are banned and not an option for anybody, then people in all sectors of agriculture and horticulture can learn and teach others to manage pests in biological input-based systems.

Research is needed in how much of what kind of biodiversity works best. Dr. Annemiek Schilder, Director of the Ventura County University of California Cooperative Extension stresses the importance of biological control for SPM and the need for an entirely new category for continuing education (CE) courses. She explains,

“Within this, there needs to be a focus on understanding ecological principles, interactions and population dynamics of beneficial and pest species, as well as the role of and how to measure farm biodiversity. We need to ask, is all biodiversity good or do we need specific components for a pest/disease-suppressive system?” 

Dr. Headrick has the same questions about how to know how much diversity is advisable. The most appropriate biodiversity may just be adding one new plant species to a system (doubling the number of species). He gives the example in sweet alyssum interplantings in Salinas valley lettuce to attract syrphid flies for aphid control that eliminated use of the worst pesticides in that chemical input-based farming system.

As we wean off from chemicals, Dr. Schilder asks: “There may be a temporary increase in pest pressure before a new balance is reached – how long does that take and how do you know you are going in the right direction? Understanding new action thresholds in all crops and varieties will require a substantial amount of research.” Who will do that?

Dr. Schilder has these additional thoughts about research needs:

“Much more testing and monitoring is needed to accurately assess pesticide burden in food and environment. Also, educating the public on relative pesticide exposure risk in the home or living environment vs. food.”

“There should be more funding for research efficacy trials. For many biological fungicides, data on efficacy on many crops and diseases are limited or lacking. More years of trials may be needed due to  variability due to variable weather conditions. We need additional efforts in finding ways to increase efficacy and reliability of existing materials, for instance with additives or blending products. For instance, from our research, we realized adding Nu-Film P (sticker-extender) helps protect bacteria-based products like Serenade, likely by reducing desiccation and UV-degradation.”

“Research is especially important for soilborne and vector-borne diseases where the vector is widespread and difficult to control. Clean (virus-tested) plants also can play a huge role in preventing diseases, especially viruses and virus-like pathogens. If viruses are absent, some insect vectors may not need the level of control that is required in the presence of viruses (National Clean Plant Network https://www.nationalcleanplantnetwork.org/)”. This will also relate to parasitic plants such as witch’s broom.

“We need research about spray technology–ways to improve coverage and efficacy as well as reduce pesticide burden and drift. Demonstrations are needed for already known technology.”

Biopesticide research, registration and extension is needed to meet rising demand. The EPA recognizes three major classes of biopesticides: Microbial Pesticides, Biochemical Pesticides, and Plant-Incorporated-Protectants (PIPs). Efficacy compares well with chemical pesticides and is safer for farmworkers and neighbors. Being biodegradable and with low volatiles, they do not pollute land, air or water and generally are low risk for beneficial insects and higher organisms and many are approved for use in organic farming. Just like with natural enemies for biological control, education is needed that they exist, that they work, that they do not pose risks as do chemical pesticides, where to get qualified advice, and where to buy them. 

As explained on the Marrone Bio Innovations website,

“Growers will try a new biopesticide product and compare it with their existing pest management programs in demonstration trials. Conducting demonstrations is the best, if not only way to gain adoption. In addition, University Extension researchers will also test pesticide products and provide their recommendations. Therefore, adoption can be faster as more field trials are conducted….In one California survey, growers and PCAs indicated that biopesticide companies should place a heavy emphasis on education in order to establish sustainable use of the product. They indicated that the companies should target specific markets, either by crop, pest or disease. In turn, companies should be very clear about the protection and value being provided to the grower.”

Biopesticides may support biological control but they are NOT biological control. The latter provides potentially more lasting benefits through classical (exploration and colonization) and augmentative biological control (releasing natural enemies to directly reduce pest populations). Biopesticides are important in the middle of the transition continuum–for biological input-based farming systems. There is a great need for proper education to build capacity for more comprehensive monitoring, integration of cultural practices, habitat enhancement, and the use of biocontrol agents and biopesticides that don’t disrupt natural biocontrol. All five of these features of biological input-based and biodiversity-based farming systems require an entirely different knowledge and skill set compared to planting pesticide-coated seeds and spraying or drenching chemicals. Biopesticides are very valuable tools, but biological control is the endgame.

Molecular biology and electromagnetic signals can help explain why biodiversity- based farming systems have few pests. After over 30 scientific papers explaining insect communication, Dr. Phillip Callahan’s discoveries remain outside of the knowledge base for pest management. Dr. Tom Dykstra founder of Dykstra Laboratories Inc. is continuing research showing how bioelectromagnetics explains the influence of electrical signaling on cell communication, growth and plant and animal health. Dr. Dykstra has a specialization in the complex physiological reasons why insects are attracted to dead, dying, or nutritionally poor, i.e. “sick” plants. He has shown measurable results with plant sap or leaf Brix readings reflecting plant nutrient composition, health and pest and disease decline in less than one season to improve soil, crop longevity, nutrient density and flavor, and profitability for producers. 

Illustration by Jan Dietrick inspired by image from Sharma, E., Anand G., & Kapoor, R. (2017). Terpenoids in plant and arbuscular mycorrhiza-reinforced defence against herbivorous insects.

Swiss scientists have also explained the electrical signals stimulated by insects chewing on plants. Wounds increase systemic plant hormone responses that can attract beneficial insects to attack the plant-chewing insect.  (Farmer, et. al. 2020) Another phenomenon in biodiversity-based systems is plant defensive strategies against herbivorous insects from terpenoids and symbiotic associations with arbuscular mycorrhizal fungi in healthy plants. Fungal hyphal networks in soil serve as electrical conduits facilitating the transfer of defense signals and terpenoids between conspecific and heterospecific plants. Terpenoids increase calcium ions and membrane depolarization causing a protective “priming memory” response lasting up to five days.(Sharma et. al. 2017). This is probably the tip of the iceberg in understanding why it is common that biodiversity-based farming systems are often pest-free and disease-free. We don’t have to have any more data than this to see how to design a Roadmap to achieve SPM goals.

Respect must be paid to all ways of knowing and learning for all SPM farm personnel. How can PCAs trained and experienced in determining chemical action levels learn new knowledge and skills to consider more and different variables when determining biological action levels? Then, also, how do PCAs help farmer clients see new options after they have been inundated by decades of pesticide propaganda? 

INRAE, the French National Research Institute for Agriculture, Food and Environment, is the number two agricultural institute in the world. It has evaluated various learning support tools including games that link principles and actions toward biodiversity-based farming to teach decision-making in situations of uncertainty associated with biodiversity-based farming systems. DPR and CDFA should welcome INRAE’s ideas and consultants in the development of curricula to support SPM.

A group training board game for learning decision-making about conservation ecology land management.

Research will help most current farmers to be more efficient and less polluting with agricultural chemicals being used at the chemical input-based part of the transition continuum. However, as learning and change take place, the need will shift to user-friendly decision-support systems which integrate up-to-date scientific knowledge for more biological inputs and biodiversity-based systems. 

Researchers at INRAE see the need for new teaching methodologies including game-based learning tools. The sociological factors are also critical. The Community Alliance for Family Farmers had an outstanding model in the 1990’s called “Lighthouse Farmer Network” that created a lively space for a monthly breakfast or lunch with a short presentation and give and take discussion with successful practitioners trying new sustainable practices. The participative discussion is much more important than the field day observations. Farmers can see what their neighbors are doing. They need to hear how it was approached and what happened. Certainly university experts giving talks is the least transformative pedagogy; more so when most of the research is in product trials where biological control is not one of the comparisons and the goal is resistance management comparing chemical, biopesticide, and genetically engineered plants. 

Duru, et. al. address the training needs:

“Developing biodiversity-based farming systems and multiservice landscapes raises questions about how to manage the “transformational” transition from specialized systems and simplified landscapes to well-established diversified ones. During this transition, variability in ecosystem services may increase greatly until slow variables reach states which provide ecosystem services at expected levels and degrees of biophysical resilience and stability. Uncertainties…may increase during this transition.” 

The transformation to increasingly biodiversity-based farming systems, where pest prevention is achieved through cultural management and habitat diversification to enhance natural biological control, requires a massive transformation in the educational and research infrastructure. Farmers and SPM educators are at the center of the work. Investment in farmer-led research must replace a research infrastructure that has been a marketing arm of the pesticide industry. This revival of the knowledge of biological control entomology with research and teaching personnel is vital. Diverse ways of knowing and learning and internal methods of validating knowledge must be respected along with the mainstream science of conservation and protection of biodiversity. 

References:

Callahan, Phillip S. (1965-1975). 36 published papers summarized on Free Library “Electromagnetic communication and olfaction in insects”.

Callahan, Phillip S., 1975. Insect antennae with special reference to the mechanism of scent detection and the evolution of the sensilla. International Journal of Insect Morphology and Embryology, Vol 4, Issue 5,(381-430).

Duru et. al. (2015) How to implement biodiversity-based agriculture to enhance ecosystem services: a review, INRA Science & Impact, Agron, Sustain. Dev. 

Farmer, Edward E, Yong-Qiang Gao, Gioia Lenzoni, Jean-Luc Wolfender and Qian Wu, 2020. Wound- and mechanostimulated electrical signals control hormone responses, New Phytologist: 227(1037-1050)

Sharma, E., Anand G., & Kapoor, R. (2017). Terpenoids in plant and arbuscular mycorrhiza-reinforced defence against herbivorous insects. Annals of Botany, ncw 263.

0 Responses to “Our Vision for Successful SPM – Part 6: New knowledge for pest prevention”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s




Archives


%d bloggers like this: